
CU-QMW-TN-0011 Issue: 1
Date: 12 September 2018 Rev. : 8

Page : i

Syntax for ASCII and Binary Data Files
for Use by QSAS

A.J. Allen
Imperial College

http://www.sp.ph.ic.ac.uk/csc-web/csc.html
csc-support-dl@imperial.ac.uk

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : i

Document Status Sheet

1. Document Title: QSAS Data File Syntax

2. Document Reference Number: CU-QMW-TN-0011
3. Issue 4. Revision 5. Date 6. Reason for Change

0 0 8 July 1996 Draft
0 1 9 October 1996 Add distinct file types.
0 2 16 October 1996 SJS/DHB comments.
1 0 30 October 1996 First release.
1 1 27 November 1996 tidying up.
1 2 24 February 1997 Extensions to formats.
1 3 3 June 1998 formalised for standalone Qtran utility
1 4 29 April 1999 Added Free Time Format specification
1 5 16 April 2002 minor corrections to free time format
1 6 25 September 2013 major changes and extension of free time for-

mat (Qie now uses Dvos)
1 7 24 May 2016 minor additions and .qat file explanation
1 8 12 September 2018 minor additions and and corrections

Contents
1 Introduction 1

1.1 File Formats . 1

2 File Contents 1

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : ii

2.1 Time Series Data . 2
2.2 Data Series . 2

3 File Headers 2
3.1 Metadata Syntax . 2

3.1.1 Global attributes . 4
3.1.2 Metadata Describing Variables . 4

4 Tabular Data Files - “.qft” Files 7
4.1 Data Records . 7
4.2 Headers for Tabular files . 7

5 Delimited Data Files 7
5.1 Data Records . 7
5.2 Headers for Delimited files . 8

6 Helper Files, “.qat” 8
6.1 Overview . 8
6.2 Extra Syntax . 8
6.3 post Processing . 9

7 Free Time Format Specification 9
7.1 Overview . 9
7.2 Key Strings . 10

7.2.1 Date Key Strings . 10
7.2.2 Time Key Strings . 11
7.2.3 Pad Characters . 12

7.3 Examples . 12

8 Reading Other ASCII Files 15
8.1 Reading the File . 16
8.2 Providing Metadata . 16

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 1

1 Introduction
This document provides information on the syntax for ASCII data files that can be read and
written by the Science Analysis System QSAS. The use of header files make it possible for
QSAS to read many ASCII flat file types from widely different missions, with the header de-
scribing sufficient information for the data to be machine parseable. The header syntax is
described fully here. The same routines also read and write standard NASA CDF format and
ESA CEF format files.

The software utility Qtran will translate between these formats.

1.1 File Formats
All data files are record oriented. They have a sequence of records each with the same variables
in the same order. Variables that are multi-dimensional take the natural C ordering, and one
entry is required for each element. In time series data the records are ordered on the monotonic
increasing time variable.

Two distinct file formats are covered.

1. Tabular data files are ASCII files with records of equal length and fixed column start
positions for each entry. These files are identified by the extension “.qft”.

2. Delimited data files are ASCII files with variable length records, with a delimiter sepa-
rating each entry. These files are identified by the extension “.qfd”.

2 File Contents
Files must have a header associated with them that describes the data and formatting within
the file (see below). This header may either be at the top of the file itself (attached) or in
a separate file (detached). Detached header files are identified by the extension “.qfh”. A
detached header may provide formatting information for a series of files which all have the
same record structure.

If the header is attached, the data records must be immediately preceded by a line:
Start data = xxx

where xxx is an integer specifying the number of records to follow. If the number of data
records is unknown, this value may be set to zero. This number is used by QSAS for veri-
fying the expected number of records; if not present, zero or non-numeric the actual number
of records will be counted before space is allocated. If the number of records exceeds that
specified a warning is issued and processing stops to avoid memory exceptions.

An exclamation mark is used as a comment marker, and all input to the right of this marker
up to the newline character is ignored on input.

Blank lines (where the first character is the newline character, or contain only space char-
acters or tabs) are ignored.

Text values may be quoted or unquoted. Note that in space separated files spaces are not
allowed within text data types even if the text is quoted.

If a file does not have an attached header, the directory is searched for a detached header
(*.qfh). The first header file located is used. This means that the appropriate header must be
available and unique within a data directory. Thus no more than one header and its associated

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 2

data files should reside in a directory and the header file can take any name with the extension
”.qfh”.

2.1 Time Series Data
Time series data have a date/time entry associated with each record. Each other entry in the
record is associated with the time in that record. The first date/time (epoch) variable detected
in each file is taken as the timeline for that file.

On output, time is represented as a text string in the ISO format adopted by CSDS (see
DS-QMW-TN-0003 for detailed specification). On input, time can either be in this same ISO
format or as a Free Format Time. Information in the file header containing such a Free Format
Time variable describes the components of the time string in the data to convert almost any
time specification into the standard cdf (and/or ISO) format. Free Format Time is described in
detail below.

Free time formats are supported for input but not output.

2.2 Data Series
Data series have no time entry in a record. If more than one data series is written to the
same file then each data series must contain the same number of records and any one-to-one
dependency (or otherwise) between variables in a record must be explicitly explained within
the file metadata.

3 File Headers
The file header contains formatting information about the file, and metadata that describes the
data. A header may be the start of a data file or in a separate (detached) file. A header may
apply to a family of data files that contain data in the same format, such as would result from
dividing data into files covering distinct time intervals.

The first line in a header may be a comment line starting ! and containing the data file
extension (eg “.qft” etc.) followed by a QIE version number. If this information is available it
will be used to test on QIE version compatibilities.

On read QSAS will use the file extension as a first guess as to data file type, nevertheless,
the presence in the file of a ‘File type’ parameter will supercede it.

QSAS will always write a file in the format specified by the options in the export window,
and will place a commented line containing the data file extension and QSAS version at the
start of the header.

3.1 Metadata Syntax
All header entries take the format
parameter = value

where “parameter” and “value” are strings of printable characters. The equals sign may be
bedded in space characters, and white space is stripped before the “parameter” token. White
space is valid within the “value” string which is terminated by the newline character or com-
ment marker, ‘!’. Leading and trailing white space is removed from the “value” token. In the

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 3

case that the “value” token contains only white space a single space character is returned as
the token. Parameters are not case sensitive.

Metadata is divided into global information that applies to the whole file and information
that describes each variable and its formatting within a record.

Blocks of information describing the variables start with a line
Start variable = name

and end with the line
End variable = name

where the value “name” is the name to be used for the variable. The variable blocks are de-
scribed in the section “Metadata Describing Variables”. These blocks are required for variable
description and header files are not valid without one describing each variable.

The file parameters below are optional for all supported file types, and if omitted QSAS
will adopt a default as specified for each item below. Extra formatting parameters needed for
the specific file types are listed in the section dealing with that file type.

File name This specifies the name of the file. No default value is assumed. It should not
include the path, but does include the file type extension. If this is a detached header it is
the name and extension of the header. Good practice would suggest that the header and
the data files to which it applies share the same file name stem up to the non-unique part
of the name.

File type This specifies the format type of the file. A default value is taken according to the
file name extension. Valid types are ‘t’ for tabular data files and ‘d’ for delimited, and
correspond to the file name extensions ‘.qft’ and ‘.qfd’ respectively.

Attribute delimiter This specifies the character to be used in the header itself to separate each
entry in a multi-entry variable attribute. If no entry is supplied a comma is assumed since
space characters are frequently valid within attribute strings.

Start meta This starts a block of metadata supplying the entries associated with a global at-
tribute. This block is closed by an End meta parameter. They are described more fully
below. The value associated with these parameters is the name of the global attribute. No
defaults are provided, and no global attributes need be supplied. QSAS will always write
a “Parents” attribute. This facility is provided for CSDS and CDF compatibility.

Comment marker The value associated with this parameter is a character that starts a com-
ment line in a data file or header. This is in addition to empty lines and lines starting with
an exclamation mark, which are always ignored as comment lines. Any line which starts
with the character token specified in “Comment marker” will be ignored whether it be in
the header or between records.

Start after The value associated with this parameter is a string token contained in the line
preceding the start of the data records. For files with attached headers, all lines will be
ignored after the “Start data” line up to and including a line containing the “Start after”
token. For files with detached headers, all lines in the data file up to and including the line
containing with the “Start after” token will be ignored. This is provided to aid interfacing
to packages that add their own header to data files

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 4

Start with The value associated with this parameter is a string token that starts the first of the
data records. This is provided to aid interfacing to packages that add their own header to
data files

One further control sequence is available, but which does not take the ‘parameter = value’
syntax:

& The numeric integer value immediately following this parameter is the number of subse-
quent lines to ignore. It takes effect immediately and may be repeated as needed. It is
provided to aid interfacing to packages that add their own header to data files.

3.1.1 Global attributes

All the global metadata available within QSAS may be written to a header, but the default is to
write only a “Parents” entry. The Global attribute block starts with a line
Start meta = name

and ends with the line
End meta = name

where the value “name” is the name of the global attribute. The global metadata block contains
the following entries:

Number of entries The value associated with this parameter is the number of attribute entries
provided for this attribute. It must be followed by the same number of “Entry” parameters
within in the attribute block.

Entry The value associated with this entry is the next entry in the global attribute. Space char-
acters are valid within a text entry. This parameter may be repeated, with each successive
value providing the next entry in the attribute.

Data type The “Data type” of a global attribute is used to convert the ascii text entry in each
“Entry” into the appropriate data type in the data structure. The default value for each
global attribute independently is text.

3.1.2 Metadata Describing Variables

The only essential blocks of metadata are those describing the variables. These give metadata
and formatting information specific to the named variable. Variables must appear in the same
order within a record that the variable entries occur within the header. Each block of variable
metadata takes the form,
Start variable = name

parameter = value
...

...
End variable = name

Essential parameters for each file type are listed in the section dealing with that file type.
The following parameters are essential for all file types:

Data type This identifies the data type and is necessary for conversion from the ascii entry.
This parameter may also be called ‘Value type’). Allowed values are

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 5

epoch or ISO time
ISO time range
double or float
int
byte
char

Sizes This is essential for any variable that has more than one element, such as arrays and
vectors. The value string must comprise as many (‘Attribute delimiter’ separated) integer
values as there are dimensions in the variable (in the CDF sense) with the number giving
the size of the array in that dimension. Thus an 8 by 54 array would have the entry
Sizes = 8,54.
It is not required for scalars.

Data The CDF concept of a variable that is fixed for all records is supported for flat files.
Data for these “non-record-varying’ variables must be supplied within the header variable
metadata segment, and no entry is then allowed in the data records. The presence of a
parameter “Data” will be taken to indicate that this is a non-record-varying variable.
The value(s) associated with this parameter are the data for that variable. These are
particularly useful for label variables. They are separated by the “Attribute delimiter” as
they are specified within the metadata segment.

Time format In time series data the time variable must have this parameter to identify the time
format used. At present there are two accepted values:

ISO indicates that the time variable is in the standard ISO string format. Files output by
QSAS and Qtran always have this Time format.

FREE TIME FORMAT indicates that the time variable in the file is held in a string
which is not in ISO form but which can be parsed by QSAS. The parsing infor-
mation is passed in the parameter “TIME FORMAT STRING”, augmented other
optional parameters (see later section).

TIME FORMAT STRING This parameter is mandatory for time variables with
Time format = FREE TIME FORMAT

and describes the time field within the file in terms of key strings such as “YYYY” or
“MON”. For example, the ISO format could be written here as
TIME FORMAT STRING = YYYY-MO-DD HH:MM:SS.sss

A full list and description of key strings is given in a later section. Note that all specifica-
tions of both parameters and values are CASE SENSITIVE and POSITION SENSITIVE,
and unexpected results will be obtained if the specification does not match exactly that
used within the data file. Note also that leading and trailing white spaces are stripped
from the ‘TIME FORMAT STRING’.

YY offset In the case of a ‘FREE TIME FORMAT’ time format this parameter specifies a
year to be added to the year field (needed if two character year format is used). Thus,
if the year 1996 is recorded in the file as ‘96’, the YY offset must be set to ‘1900’. No
default is provided. Files with ‘YY’ format time strings that cross century boundaries
must be broken at the century boundary, and merged inside QSAS.

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 6

MM offset In the case of a ‘FREE TIME FORMAT’ time format this parameter specifies a
month to be added to the month field.

DD offset In the case of a ‘FREE TIME FORMAT’ time format this parameter specifies a day
to be added to the day or day-of-year fields.

SS offset In the case of a ‘FREE TIME FORMAT’ time format this parameter specifies a
seconds value as a double to be added to the seconds field.

TIME START In the case of a ‘FREE TIME FORMAT’ time format this parameter specifies
a date/time epoch to add to all resulting date/times and takes ISO text time format.

TIME COMPONENT In the case of a ‘FREE TIME FORMAT’ time format where the date/time
fields are spread over multiple variables this parameter is used to chain the variables to-
gether. The first variable in the record that forms part of the date/time must have a
TIME COMPONENT parameter whose value is the name of the next component vari-
able in the record. This in turn must have a TIME COMPONENT parameter pointing to
the next, and so on. The last component variable does not take a TIME COMPONENT
parameter and the chain ends.

All records time In the case of a ‘FREE TIME FORMAT’ time format, this is an OPTIONAL
parameter specifying a component(s) of time which is the same for all records and not
present in the data file itself. For example, for short segments of data the year and date
may not be repeated in each record but simply given once in a header (or filename) by
some data archival systems. In such cases an entry of, say,
All records time = 1984-JAN

supplies the year and month to be used for each record. If this parameter is present, the
following parameter ‘All records format’ must also be present to specify its format.

All records format This parameter specifies the format of the ‘All records time’ string using
the same syntax as the ‘TIME FORMAT STRING’. For the example above a suitable
entry would be
All records format = YYYY-MON

Further desirable parameters are the QSAS subset of the CSDS attributes. These will always
be written by QSAS if available.

• UNITS

• FIELDNAM

• Frame

• SI conversion

Other variable attributes may be written within the variable block. Certain attributes will
default to being the same data type as the variable (eg SCALEMIN and SCALEMAX) but most
will default to text atributes.

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 7

4 Tabular Data Files - “.qft” Files

4.1 Data Records
Data is record oriented with a newline character denoting the end of each record. All records
in a file are of the same fixed width with each variable taking a fixed column start position and
column maximum width. This allows data to be tabulated for ease of reading and ingestion into
other packages. Each data record must contain an entry for each variable in the order specified
by the header descriptors. Missing entries must be padded by space characters or a fill value to
ensure correct ordered reading. Tab characters are treated as single characters and must not be
used in formatting tables of data (use delimited file syntax with tab as the delimiter).

Each variable may be multi-dimensional with the number of entries per variable being the
product of the dimensionalities. Thus a velocity vector has three entries and a two by two array
has four entries.

The ordering for arrays within a record is the natural ‘C’ ordering, that is, the last index
varies the fastest.

4.2 Headers for Tabular files
In addition to the global metadata and specific variable metadata the header must specify po-
sitions for each variable in a record. The column start position of the first element of each
variable in a record, together with the (constant for each element in a variable) field width of
each entry must be specified as part of each variable description. These have syntax
column start = nn
column width = mm
where nn and mm are numbers and the first column position is counted as zero.

Columns of data can be skipped in tabular files by omitting the corresponding variable
description. The column start and column width are sufficient to locate variables that are re-
quired, and entries interspersed between specified variables in each record may be ignored.

5 Delimited Data Files

5.1 Data Records
Data is record oriented with a character (default newline) denoting the end of each record. The
entries for each variable in a record must appear in the order specified by the header descriptors.
Each entry within a record must be separated from its neighbours by a delimiter (specified in
the header). Missing entries should be padded by a fill value. If the delimiter character is
a space, then multiple spaces are treated as a single delimiter, otherwise repeated delimiters
indicate missing entries.

Each variable may be multi-dimensional with the number of entries per variable being the
product of the dimensionalities. Thus a velocity vector has three entries and a two by two array
has four entries.

The ordering for arrays within a record is the natural ‘C’ ordering, that is, the last index
varies the fastest.

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 8

Any printable character may be used as an entry delimiter except for numeric characters
and format specifiers ‘e’, ‘f’ and ‘g’, the decimal point, ‘.’ and the operators ‘+’ and ‘-’. Any
character that appears within a formatted number or text data entry will also result in a read
failure and must be avoided. A space character is permitted as a delimiter.

Caution must be exercised when writing character data to ensure that a delimiter is available
and precluded as a valid data entry. White space will often be a valid data character in text data.

A comma or space character provide for most ease of readability, and are recommended for
numerical data, but tab delimited data are also common.

5.2 Headers for Delimited files
In addition to the global metadata and specific variable metadata the header must also specify
the delimiter to be used to separate data entries. This delimiter is the same for all variables (but
may differ from that used in the header for attributes), and is placed with the global metadata.
It has syntax
Data delimiter = x
where x is any printable character. The space character is specified by
Data delimiter =

or Data delimiter = ‘ ’

The default character if no Data delimiter line is present is a comma.

6 Helper Files, “.qat”

6.1 Overview
Helper files have the same syntax as detached header files, but are read in addition to headers.
Any file ending “.qat” found in the same directory as a data file will be read in addition to the
data file header information and specified detached header, and will take effect before the data
is read in.

They serve the role of modifying the header information and supplying missing metadata.
If the same attribute information is found in the data file and the helper file, then the helper file
content takes precedence to allow modification of data header content, so that badly formed
metadata in data files can be corrected.

In addition to using the syntax of regular header files, the helper files will accept extra
instructions introduced to allow mission specific data structure modifications.

6.2 Extra Syntax
Use with It can be specified as metadata within a non-record varying variable in the .qat file.

This causes the containing variable to also be read when the named variable is read from
the file. If the name is “Always” then this variable is always read in. It thus permits the
containing variable to be attached as a cross reference to another variable, or just loaded
as though it were in the data file. Thus...
START VARIABLE = Energy Table
VALUE TYPE = FLOAT
sizes = 6

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 9

Data = 39665, 13155.1, 4212, 2307, 981.7, 433.3
SI Conversion = ”1.60217646E-19>J”
Units = ”eV”
Use With = ”NO OF COUNTS”
END VARIABLE = Energy Table
will cause the variable Energy table to be read in if the variable NO OF COUNTS is
present.

6.3 post Processing
There are extra capabilities introduced for Rosetta PDS file syntax handling that apply to post
processing the data objects after ingestion. The Rosetta Plasma Consortium (RPC) quicklook
data arrays with dimensionality above one are spread over a succession of records, and need
re-assembly into arrays. These are recorded here for completeness, but it is not expected that
they will be used outside of Rosetta.

DEPEND i ALIAS identifies the variable holding the bin index for a variable spread over
records. The i can be 1, 2, 3 etc, and the DEPEND i will be constructed from this
variable when the data has been re-formatted as an array.

BINS provides the values to be used for a Depend i variable replacing the index.

Fixed Sizes i indicates that the dimension i should have the size specified, even if the first
record does not fill it. The data will be averaged out over the dimension. This allows for
instruments that change dimension sizes.

Post Run Qtran passes a flag that allows Qtran to perform instrument specific correction. It
is specific to Qtran internals and has no purpose without corresponding code added in
Qtran.

VECTOR COMP i Identifies which scalar variable is to be treated as the i component of a
vector. VECTOR COMP 1 = this, and the names of the other variables as, e.g. VEC-
TOR COMP 2 = “RPC B y” etc are used in the variable for giving first component. The
other components should not have these attributes specified as they will be located auto-
matically.

VECTOR NAME Provides the name to be used for the assembled vector when using VEC-
TOR COMP i.

7 Free Time Format Specification

7.1 Overview
Time variables of ‘Time format = FREE TIME FORMAT’ enable most foreign time series files
to be imported into QSAS, or translated by Qtran into a standard format (e.g., qft or qfd with
ISO time strings, or cdf). The interpretation and conversion of the time field in each data record
is accomplished by specifying its components and format in the ‘TIME FORMAT STRING’

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 10

metadata for that variable. This string is made up of ‘key strings’ to match EXACTLY the entry
in the data record. The last occurence of any particular ‘key string’ is used.

There is, of course, a restriction that the set of ’key strings’ plus variable parameters (see
above) can provide a complete date specification of the ‘date/time’ field, but any missing time
fields will be treated as zero. A badly formed date/time string will appear in Qtran/QSAS as
‘2000-01-01 00:00:00.00’.

There is no restriction that the time field in the record be contained within a single variable.
However, if the date/time field is split amongst variables the ‘TIME COMPONENT’ parameter
(see above), must be used, and the first component variable will appear as the complete time
variable (the others will appear badly formed and should be ignored). Variables comprising the
date/time value need not be consecutive nor in any particular order, but the order of the variable
blocks in the header, as always, must reflect their order in the records.

The basic algorithm simply parses the ’TIME FORMAT STRING’ and compiles the loca-
tion of each date/time element. This information is then used to extract the values from the
time entries in each record and compute the resulting epoch value. As described in the sec-
tion on Variable Metadata, any elements, such as the year, month, seconds offset, etc., which
are common to all records but not present in each record can be specified using offset values,
or collectively using a ’TIME START’ flag. The same may also be achieved by using the
‘All records time’ and ‘All records format’ strings which together are applied to all records
using the free time syntax.

Once all components have been identified they are combined into a DvTime object within
QSAS/Qtran, which stores the value split into a Julian Date as an integer and seconds as a
double. The DvTime library is valid for all dates both AD and BCE but ignores leap seconds,
and can usually retain nanosecond accuracy. DvTime is also available as a stand-alone library,
and as source under an extended GPL licence.

7.2 Key Strings
The following provides an exhaustive list of Key Strings used in Free Time Format input. They
need not appear in this order.

7.2.1 Date Key Strings

YYYY 4-digit year specification.

YY 2-digit year. If this format is used the YY offset or TIME START parameter must also
be set. This format should be avoided where possible as it is intrinsically not year 2000
compliant.

Doy 3-digit day of the year. Values obtained are converted into month and day in the given
year, with leap years treated correctly. Note the lower case ‘oy’ which avoids conflict
with year key strings.

MON 3-character month string. The values expected are: “JAN”, “FEB” or “FEV”, “MAR”,
“APR” or “AVR”, “MAY” or “MAI”, “JUN”, “JUL” or “JLY”, “AUG” or “AOU”, “SEP”,
“OCT”, “NOV”, “DEC”, but values in the data file are case-insensitive.

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 11

MONT or MONTH 4 or 5-character month string. The optional fifth character is ignored, so the leading 4
digits expected are: “JANU” or “JANV”, “FEBR” or “FEVR”, “MARC” or “MARS”,
“APRI” or “AVRI”, “MAY ” or “MAI ”, “JUNE” or “JUIN”, “JULY” or “JUIL”, “AUGU”
or “AOUT”, “SEPT”, “OCTO”, “NOVE”, “DECE”, but values in the data file are case-
insensitive.

MO 2-digit numeric month.

DD 2-digit numeric day.

7.2.2 Time Key Strings

Time key strings can have any length. The descriptions below show the repeat character with
an overbar, e.g., H means H, HH, HHH, HHHH, etc. are all allowed. Whole and fractional
parts may be specified separately, or the floating point value read in its entirety. Upper case
letters are read as floats and may contain a decimal point, or may just be used for the whole
part of the number. Fractional parts use lower case, and are assumed to contain no decimal
point and are multiplied by 10−field width. Values are converted from the input string using the
C++ library functions strtof.

H n-digit whole or decimal hour (n≥1). Typically ‘HH’ but could be ‘HHHHH’ to read in
‘17.37’ hours.

MM or MI n-digit whole or decimal minutes (n≥2). ‘MMMM or MIII’ would read in ‘28.4’ min-
utes.

S n-digit whole or decimal seconds (n≥1).

L or MC n-digit whole or decimal milliseconds (n≥1), e.g. LLL or MCC to read 2.1 msec.

U n-digit whole or decimal microseconds (n≥1), e.g. UUU to read 123 microsec.

N n-digit whole or decimal nanoseconds (n≥1), e.g. NNNN to read 1.34 nanosec.

d n-digit fractional day (n≥1). ‘ddd’ would read in ‘667’ as 0.667 of a day.

h n-digit fractional hour (n≥1). ‘hh’ would read in ‘78’ as 0.78 of an hour.

m n-digit fractional minute (n≥1). ‘mmm’ would read in ‘234’ as 0.234 of a minute.

s n-digit fractional second (n≥1). ‘sss’ would read in ‘567’ as 0.567 of a second.

l or c n-digit fractional millisecond (n≥1). ‘l’ or ‘c’ would read in ‘9’ as 0.9 of a millisecond.

n n-digit fractional nanosecond (n≥1). ‘nn’ would read in ‘99’ as 0.99 of a nanosecond,
but this accuracy is not guaranteed for all dates.

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 12

7.2.3 Pad Characters

Any character not used in the Date or Time Key Strings can be used in the ‘TIME FORMAT STRING’
as a pad character. To ease future enhancements, however, we recommend that such characters
be restricted to the letters ‘X’, ‘T’, ‘Z’, <space>, and punctuation (e.g, “:”). Note, however,
that leading and trailing <space> characters are stripped off of the ‘TIME FORMAT STRING’
and off of the data value itself, thus a non-<space> pad character should be used if required at
the leading and trailing ends of the ‘TIME FORMAT STRING’.

7.3 Examples
Here we give a few examples of entries in data files and the corresponding Free Time Format
variable metadata for reading such files. A comment line for counting columns is included in
each example to ease readibility.

!123456789012345678901234567890123456789012345678901234567890

1985-09-11 14:22:46.667 -3.38101 -1.07421 2.34547

1985-09-11 14:23:06.667 -3.16654 -1.41437 1.90424

This example is in fact taken from a real .qft file which has its time in ISO format which is
understood natively by QSAS and Qtran (using Time format = ISO), but by way of illustration,
in Free Time Format, it could have the following header fragment for the time field:

Start_variable = epoch

Column_start = 0

Column_width = 25

Data_type = epoch

Time_format = FREE_TIME_FORMAT

TIME_FORMAT_STRING = YYYY-MO-DD HH:MM:SS.sssXX

End_variable = epoch

Note the use of the pad characters ‘XX’ to ensure that the TIME FORMAT STRING is 25
characters wide after being stripped of leading and trailing white space. An alternative would
be to specify Column width = 23. The hyphens, space, colons, AND decimal point are all
pad characters here which mimic the time string in the data file, thereby reducing the chance of
error. We could have written instead

TIME_FORMAT_STRING = YYYYXMOXDDXHHXMMXSSXsssXX

which is much harder to read. Other alternative format strings include:

TIME_FORMAT_STRING = YYYY-MO-DD HH:MI:SS.LLLXX

and

TIME_FORMAT_STRING = YYYY-MO-DD HH:MI:SSSSSSXX

or

TIME_FORMAT_STRING = YYYY-MO-DD HH:MI:SS.sssXX

This last form cannot be SS.SSS as would find two seconds fields and use the ‘SSS’ as the
seconds field and IGNORE the ‘SS’.

Here is another example:

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 13

!123456789012345678901234567890123456789012345678901234567890

940921-Time N Vx Vy Vz

00:00:05.161 1.482 -218 13 -13

00:00:17.105 1.543 -216 13 -11

This file needs a header which skips the first two lines (using, e.g. ‘&3’ as the last line of
the detached .qfh header or ‘&2’ at the end of a pre-pended .qft header). Note in the detached
header we must add 1 to skip the end of file marker on the header.

The date is in the second line, which cannot be read directly, so here we can use the
TIME START or ‘All records time’ facility:

Start_variable = epoch

Column_start = 0

Column_width = 12

Data_type = epoch

TIME_START = 1994-09-21T00:00:00

Time_format = FREE_TIME_FORMAT

TIME_FORMAT_STRING = HH:MM:SS.LLL

End_variable = epoch

or

Start_variable = epoch

Column_start = 0

Column_width = 12

Data_type = epoch

YY_offset = 1900

Time_format = FREE_TIME_FORMAT

TIME_FORMAT_STRING = HH:MI:SS.MCC

All_records_format = YYMODD

All_records_time = 940921

End_variable = epoch

We could have also written:

All_records_format = YYYY-MON-DD

All_records_time = 1994-SEP-21

Another example:

!123456789012345678901234567890123456789012345678901234567890

94 207 JUL 26 04:10:22.046 0 16 0.40599 0.01591

The leading space character is stripped automatically on reading the data, so the format string
should start with the first non-space character.

Column_start = 0

Column_width = 28

YY_offset = 1900

TIME_FORMAT_STRING = YY Doy XXX XX HH:MM:SSSSS

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 14

however is is safest to skip the space by starting the read at the second column:

Column_start = 1

Column_width = 27

YY_offset = 1900

TIME_FORMAT_STRING = YY Doy XXX XX HH:MI:SSSSS

or and we could have picked up the month/day instead of the date:

YY_offset = 1900

TIME_FORMAT_STRING = YY XXX MON DD HH:MI:SSSSS

An example of use within a delimited file is:

!123456789012345678901234567890123456789012345678901234567890

1985-09-11 14:22:46.667 ,-3.381,2.43,27.987

1985-09-11 14:23:06.667 ,-3.16654,1.346,5.793

This is a comma delimited file (.qfd), and can be read by:

Start_variable = epoch

Data_type = epoch

Time_format = FREE_TIME_FORMAT

TIME_FORMAT_STRING = YYYY-MO-DD HH:MI:SS.sssX

End_variable = epoch

Here the trailing X is not essential, as the time variable will be parsed to locate positions and
lengths of recognised fields and any unused string is ignored. Note, if it were a space delimited
file, the date and time components would end up in two variables.

A final example of the date/time separated over three variables. In this case we have day-
of-year, year, orbit number, time field then some other data:

!123456789012345678901234567890123456789012345678901234567890

211, 1985, 10, 14:22:46.667 ,-3.381,2.43,27.987

211, 1985, 10, 14:23:06.667 ,-3.16654,1.346,5.793

This is a comma delimited file (.qfd), and must be read by specifying three time variables. Note
that the date/time components are chained together using the TIME COMPONENT parameter.

Start_variable = epoch

Data_type = epoch

Time_format = FREE_TIME_FORMAT

TIME_FORMAT_STRING = Doy

TIME_COMPONENT = year

End_variable = epoch

Start_variable = year

Data_type = epoch

Time_format = FREE_TIME_FORMAT

TIME_FORMAT_STRING = YYYY

TIME_COMPONENT = time

End_variable = year

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 15

Start_variable = orbit

Data_type = int

End_variable = orbit

Start_variable = time

Data_type = epoch

Time_format = FREE_TIME_FORMAT

TIME_FORMAT_STRING = HH:MI:SS.sss

End_variable = time

Note the last component does not have a TIME COMPONENT parameter as it completes
the input. The component variables need not be consecutive or in ISO order (Day of year is
before year in this example). The variable declarations must, however, appear in the same order
as the variables in the record.

The same structure may be used for space separated data fields where the columns are not
aligned (so that a tabular format does not work)

!123456789012345678901234567890123456789012345678901234567890

211 1985 10 14:22:46.667 -3.381 2.43 27.987

211 1985 10 14:23:06.667 -3.16654 1.346 5.793

where it is necessary to specify the delimiter as a space by:

Data_delimiter = ’ ’

or simply

Data_delimiter =

Reading flat files requires accurate header writing, and this is doubly so for Free Time
Formats which depend critically on position and case. We recommend headers be checked by
running Qtran to convert, for example, the .qft file (or if a large file just the first few records)
with a Free Time Format specification into a .qfd file using the command Qtran -od <file>
and visually comparing the results prior to, e.g., reading directly into QSAS or converting to
cdf.

8 Reading Other ASCII Files
It is often possible to use the combination of detached headers and helper files to educate
Qtran (and QSAS) in how to read other ASCII file formats, provided they are record based
(each record holds data for each variable at a particular time or other dependency). There are
two aspects to translating (or ingesting into QSAS) an ASCII file. Firstly it is necessary to
provide the descriptions necessary to read the file, and secondly it is well worth ensuring that
the minimal set of metadata is supplied that describes the data up to a standard to allow QSAS
and other tools to handle the data intelligently.

Note that QSAS uses exactly the same methods to read a data file as Qtran, and if Qtran can
translate a file into another format, then QSAS will also be able to read it without translation
(but needs the same header or helper files).

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 16

Remember that only the first header found in the same directory as a data file will be read,
so different data products should be kept in distinct folders with their own appropriate headers
and helper files. Note also that all helper files will be read and the last read will take precedence
if there are conflicts, so .qat files should be kept away from directories holding other data files
otherwise they could impair the reading of those files.

8.1 Reading the File
Comparing the data file with the various formats described in this document is a first step
towards determining how to read the file. Firstly decide if the file is tabular (all column starts
are fixed with fixed width fields) or delimited (most often comma or space separated). Having
chosen the route to take, compare with the relevant qft or qfd file metadata to determine what
needs to be supplied, and either write a complete header (.qfh) or helper file (.qat) if a useable
header already exists.

The contents of the header or helper file follow exactly the same syntax as required for these
file types specified above. Ensure that variables are described in the order they appear within
the records, and that tabular files have the start column set for each variable. Extra constraints
such as the delimiter to use for data and/or metadata and whether the records are one per line
or ended by a delimiter may need to be specified.

The hardest part of most files is assembling the time variable. The section on Free Time
Format above will need to be used if the format is anything other than an ISO time string, or if
it contains spaces. In space delimited files, a time field containing spaces will need to be read
as separate variables and the Free Time metadata specified to allow them to be assembled. See
sample file f arraf.qfd for a time field split over variables.

8.2 Providing Metadata
Once a file can be read, it is worth adding essential metadata to the variable blocks so that the
data is well described and software can present and manipulate the data intelligently. Essential
metadata and its syntax are described in DS-QMW-TN-0010 and the full Cluster metadata
descriptions are in the Data Dictionary, both in the doc folder in this distribution.

There are only a few essential attributes (and these are fully described in DS-QMW-TN-
0010):

• SI conversion (fixed syntax definition of the quantity’s units and conversion factor to
base SI)

• UNITS (string for axis labelling)

• DEPND 0 (timeline or other variable identifying records)

• Frame (vectors only)

• DEPEND i (arrays only, where i is 1, 2, up to the array dimension to add a numeric bin
value, e.g. energy or angle)

• LABEL i (arrays only if described by text, e.g. x, y, z)

• FIELNAM (Name to help title plots since variable names can be long)

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 17

• LABLAXIS (name to use as axis label for scalars)

Of these, SI conversion is perhaps the most important since it identifies the units in a ma-
chine readable syntax and allows intelligent arithmetic operations. There are many examples
available in this document, in the sample files and in DS-QMW-TN-0010.

Sample Header

! Hand-edited Header - Sample

! SJS 15 May 1998

!

! Places requiring editing are denoted by "! <-----------"

!

!------------------- QSAS ASCII File -------------------|

! Free width data entries separated by delimiters |

! |

! ASCII Format |

! Native C ordering, last index varies fastest |

! Blank lines are ignored |

! "!" escapes rest of line as comment |

!---|

!

File_name = SC_RR_INS_YYYYMMDD_Extn_V01.qfd ! <-----------

Attribute_delimiter = ,

File_type = d

Data_delimiter = ,

!

!!!

! Global Metadata !

!!!

Start_meta = Logical_file_id

Number_of_entries = 1

Entry = SC_RR_INS_YYYYMMDD_Extn_V01.qfd ! <-----------

End_meta = Logical_file_id

!

Start_meta = Project

Number_of_entries = 1

Entry = PROJ>LONG PROJECT NAME ! <-----------

End_meta = Project

!

Start_meta = Discipline

Number_of_entries = 1

Entry = SPACE PHYSICS> MAGNETOSPHERIC PHYSICS ! <-----------

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 18

End_meta = Discipline

!

Start_meta = Source_name

Number_of_entries = 1

Entry = SOURCE ! <-----------

End_meta = Source_name

!

Start_meta = Data_type

Number_of_entries = 1

Entry = RES>RESOLUTION ! <-----------

End_meta = Data_type

!

Start_meta = Descriptor

Number_of_entries = 1

Entry = INS>LONG INSTRUMENT NAME ! <-----------

End_meta = Descriptor

!

Start_meta = Data_version

Number_of_entries = 1

Entry = 01 ! <-----------

End_meta = Data_version

!

Start_meta = Generation_date

Number_of_entries = 1

Entry = YYYY-MM-DDTHH:MM:SS.SSSZ ! <-----------

End_meta = Generation_date

!

Start_meta = Caveats

Number_of_entries = 0

!Entry = PUT ANYTHING HERE or nothing ! <-----------

End_meta = Caveats

!

!!!

! Variables !

!!!

Start_variable = epoch

! scalar, no Size entry

Data_type = epoch

Time_format = ISO

!FILLVAL = -1.0E31 ! <----------- uncomment if needed

End_variable = epoch

Start_variable = SAMPLE_VECTOR_B_FIELD ! <----------- and below

Sizes = 3

Data_type = float

CU-QMW-TN-0011 Issue: 1
QSAS Data File Syntax Rev. : 8
Date: 12 September 2018 Page : 19

FIELDNAM = Magnetic field

Frame = vector>gse_xyz

SI_conversion = 1.0e-9>T

UNITS = nT

DEPEND_0 = epoch

DEPEND_1 =

!FILLVAL = -1.0E-31 ! <----------- uncomment if needed

End_variable = SAMPLE_VECTOR_B_FIELD

Start_variable = SAMPLE_SCALAR_B_N_SIGMA ! <----------- and below

! scalar, no Size entry

Data_type = float

FIELDNAM = Normalised delta B / B

Frame = scalar>na

SI_conversion = 1.0>(ratio)

UNITS = ! no units

DEPEND_0 = epoch

!FILLVAL = -1.0E-31 ! <----------- uncomment if needed

End_variable = SAMPLE_SCALAR_B_N_SIGMA

!!!

! Data !

!!!

!epoch,SAMPLE_VECTOR_B_FIELD,SAMPLE_SCALAR_B ! <-----------

!

! Specifying 00 data records means "unknown" and defaults to all data

! Extra white space between entries (for readability) is safe but not needed

! Time field must include space or ISO separators as 1995-01-23T02:33:17.235Z

Start_data = 00 ! Data records to follow

1995-01-23 02:33:17.235, 2.7453, -0.15678, 77.456, 2.3475

1995-01-23 02:33:21.124, 2.7453, -0.15678, 72.156, 2.1175

1995-01-23 02:33:25.921, 2.729, -0.15678, 77.456, 3.2128

1995-01-23 02:33:30.012, 2.7453, -0.12343, 72.156, -1e+31

1995-01-23 02:33:34.235, 2.1268, -0.11253, 83.501, 1.1194

1995-01-23 17:44:46.845, 12.341, 5.2345, 83.247, 2.1563

1995-01-23 17:44:50.334, 12.341, 5.2345, 83.247, 2.1563

1995-01-23 17:44:55.112, 12.341, 5.2345, 83.247, 2.1563

1995-01-23 17:44:59.345, 12.341, 5.2345, 83.247, 2.1563

1995-01-23 17:45:03.749, 12.341, 5.2345, 83.247, 2.1563

1995-01-23 17:45:08.153, 12.341, 5.2345, 83.247, 2.1563

