
Data File Interface Library, Programmer’s Manual

CU-QMW-MA-0010

16 April 2002

A.J. Allen
Astronomy Unit, Queen Mary and Westfield College,

Mile end Road, London E1 4NS, U.K.
email: A.J.Allen@qmw.ac.uk

April 16, 2002

Contents

1

Chapter 1

Introduction

This manual describes the family of C routines used in direct data file access and export
from within QSAS and the format exchange software QTRAN.

1.0.1 Development

Developed under Sun Solaris 2.7, using ANSI C. New data file formats are added periodically.

2

Chapter 2

Qie Module

2.1 Introduction

This chapter deals with the functions associated with writing data files from QSAS, and
direct reading and browsing of data files by QSAS. Recognised file types are Common Data
Format (CDF) files and ascii flat files using the QMW defined syntax (CU-QMW-TN-0011)
and Cluster Exchange Files (CEF).

Data entries in flat files may be either separated be delimiters, or arranged by column
position in tabular form. Flat files must have associated headers that may be in separate
files (detached) or at the start of the data file itself (attached). Details of this syntax are in
the document CU-QMW-TN-0011.

2.2 Structures

typedef enum QiSOptions_f_type {

UNSET,

TABULAR,

DELIMITED,

EXCHANGE

} QiOptions_f_type;

typedef enum QiSOptions_header {

ATTACHED,

DETACHED,

NO_HEADER

} QiOptions_header;

typedef enum QiSOptions_rec_num {

NUM_OFF,

NUM_ON

} QiOptions_rec_num;

typedef enum QiSOptions_priority {

REPLACE=1,

WARN

} QiOptions_priority;

typedef enum QiSOptions_object {

TS,

DS

} QiOptions_object;

3

typedef enum QiSTimeFormat_e { /* cope with more time formats SJS*/

NOT_A_TIME,

ISO,

FREE_TIME_FORMAT

} QiFTTimeFormat_e;

typedef struct QiSOptions

{

QiOptions_header header; // flag ATTACHED, DETACHED or no header

QiOptions_f_type f_type; // if UNSET uses file clues

QiOptions_rec_num rec_numbering; // flag to set record numbering on

QiOptions_priority priority; // flag for overwrite on new file

QiOptions_object object_type; // qsas obj type

char attr_delim; // delimiter to use in header

char data_delim; // delimiter to use in data

char rec_end; /* end of record delimiter */

char row_end; /* end of row in array delimiter */

QiOptions_f_type type_guess; // file type guess from context

FILE * fp_display; // file pointer for output display

FILE * fp_null; // file pointer to null for losing things

char debug_choice; // ’f’=fp_display, ’w’=QSAS fn, else off

double sample_H_interval; // sampling interval, normally Half_interval

char * start_after; // str to identify last line before data

char time_sep_attr; // char separator in ISO time in attrs

char time_sep_data; // char separator in ISO time in data recs

char * header_path; // path to header file if detached

char * header_name; // name of header file if detached

char * get_only; // name of single variable to fetch,

// if STR_NULL gets all

char EXTN_CDF[5]; // strings for known file extensions

char EXTN_QFT[5]; // these are initialised in QiMakeOptionsObj

char EXTN_QFD[5];

char EXTN_QHD[5];

char EXTN_CEF[5];

} QiOptions;

typedef struct QiSCDFepoch{ /* moved by SJS re FT */

double tsince0;

long year;

long month;

long day;

long hour;

long minute;

long second;

long msec;

} cdf_epoch;

typedef struct QiSFTParser /* info to parse FT string */

{

int n_found_date; /* number of date strings to get */

QiFTdatestrings_e found_date[N_FT_DATE_STRINGS]; /* which ones found */

int date_start_in_FT[N_FT_DATE_STRINGS]; /* start pos (fr 0)*/

int date_width_in_FT[N_FT_DATE_STRINGS]; /* field widths */

int n_found_time; /* and all same stuff for time */

QiFTtimestrings_e found_time[N_FT_TIME_STRINGS];

int time_start_in_FT[N_FT_TIME_STRINGS];

int time_width_in_FT[N_FT_TIME_STRINGS];

} QiFTParser;

4

typedef struct QiSFTpacket /* holds all info; goes into rec fmt */

{

QiFTTimeFormat_e timeformat;

QiFTAllRecordsFlag_e AllRecordsFlag;

char AllRecordsFormatString[MAX_FT_LENGTH];

char AllRecordsTimeString[MAX_FT_LENGTH];

char FreeTimeFormatString[MAX_FT_LENGTH];

cdf_epoch epoch;

QiFTParser ft_parser_s;

double time2msecs_factors_adjusted[N_FT_TIME_STRINGS];

} QiFTpacket;

typedef struct QiSCDFContents

{

long n_vars; // number of variables

long n_recs; // number of data records

long time_var_num; // var number of time variable

char *io_f_name; // file name for new file

char *io_f_path; // path to directory to hold new file

char *io_f_extn; // 4 char file ext, .cdf, .qft, .qfd, .qfb

long num_g_attrs; // number of global attrs

QiCDFVariable ** vardata; // ptr to array of QiSCDFVariable structs

QiGlobalAttr ** g_attr; // structure for global metadata

} QiCDFContents;

typedef enum QiSCDFVariable_novary{

WRITE_ONCE,

EVERY_RECORD

} QiCDFVariable_novary;

typedef struct QiSCDFVariable

{

QiCDFVariable_novary novary_opt; // flag to identify Non-RV vars

long sizeofentry; // number of bytes for each data entry

long number; // variable number in cdf

char *name; // variable name

long data_type; // CDF data type

long rec_vary; // CDF record vary value = VARY or NOVARY

long max_rec_num; // record number of last record, start at 0

long num_dims; // number of CDF dimensions

long *dim_sizes; // ptr to array of sizes for dimensions

long *dim_varys; // ptr to array of dim vary’s

char **dim_depends; // ptr to array of Depend_i strs, each dim

long num_v_attrs; // number of variable attributes held

long num_elems; // number of elements per entry

void * data; // pointer to array of data entries

struct QiSVarAttribute *attribute; // ptr to attr struct

} QiCDFVariable;

typedef struct QiSGAttrEntry

{

long exists;

long data_type;

long num_elems;

void *data;

} QiGAttrEntry;

5

typedef struct QiSGlobalAttr

{

long number;

char *name;

long num_entries;

struct QcSGAttrEntry *entry;

} QiGlobalAttr;

typedef struct QiSVarAttribute

{

long number;

char *name;

long data_type;

long num_elems;

void *data;

} QiVarAttribute;

2.3 Routines

2.3.1 QiWriteCSDSgenCDF

QiWriteCSDSgenCDF

Export QiSCDFContents object as CSDS standard CDF file.

Synopsis
#include "qie.h"

long QiWriteCSDSgenCDF (struct QiSCDFContents * QiSCDF,

struct QiSOptions * QiOpt);

Parameters

QiSCDF Specifies a pointer to a structure containing the path and name of file to
be created as well as the global attributes (metadata) and data together with the
corresponding variable attributes. The structure is of type QiSCDFContents.

QiOpt Specifies a pointer to a structure containing processing options. The structure
is of type QiSOptions.

Return Value

QMW OK The file was created and populated successfully.
Otherwise Return error codes are defined in qie.h. See QiErrStr.

Discussion WriteCSDSgenCDF creates a CSDS standard CDF file and populates it
with the data contained in the structure pointed to by QiSCDF. The file name is
given by QiSCDF->io f name and the path by QiSCDF->io f path.

File processing options are controlled through the structure pointed to by QiOpt.

The allocation and freeing of QiSCDF and QiOpt are the responsibility of the calling
routine, and this must be done by calling the associated creation and deletion functions
QiMakeCDFContentsObj, QiMakeOptionsObj, QiFreeCDFContentsObj and
QiFreeOptionsObj. Internal storage is freed before the function returns. The input
structures are unaltered.

Related Information

/cluster/devel/include/qie.h

/cluster/devel/lib/qie.o

6

2.3.2 QiWriteCSDSgenFlat

QiWriteCSDSgenFlat

Write data and metadata from QiSCDFContents object into a flat file.

Synopsis
#include "qie.h"

long QiWriteCSDSgenFlat (struct QiSCDFContents * QiSCDF,

struct QiSOptions * QiOpt);

Parameters

QiSCDF Specifies a pointer to a structure containing the path and name of file to
be created as well as the global attributes (metadata) and data together with the
corresponding variable attributes. The structure is of type QiSCDFContents.

QiOpt Specifies a pointer to a structure containing processing options. The structure
is of type QiSOptions.

Return Value

QMW OK The file was created and populated successfully.

Otherwise Return error codes are defined in qie.h. See QiErrStr.

Discussion QiWriteCSDSgenFlat creates a QMW standard ascii file and populates it
with the data contained in the structure pointed to by QiSCDF. The file name is
given by QiSCDF->io f name and the path by QiSCDF->io f path.

File processing options are controlled through the structure pointed to by QiOpt.

The allocation and freeing of QiSCDF and QiOpt are the responsibility of the calling
routine, and this must be done by calling the associated creation and deletion functions
QiMakeCDFContentsObj, QiMakeOptionsObj, QiFreeCDFContentsObj and
QiFreeOptionsObj. Internal storage is freed before the function returns. Unused

pointers within the structures should not be set to NULL as these and defaults options
are handled safely within the “Make” and “Free” functions. The input structures are
unaltered.

Related Information

/cluster/devel/include/qie.h

/cluster/devel/lib/qie.o

2.3.3 QiGetCSDSgenCDF

QiGetCSDSgenCDF

Import CSDS standard CDF file into QiSCDFContents object.

Synopsis
#include "qie.h"

int QiGetCSDSgenCDF (const char * filename,

struct QiSCDFContents * QiSCDF);

Parameters

filename Specifies the file path and name of the CDF file to be read.

7

QiSCDF Specifies a pointer to a structure to hold the imported global attributes
(metadata) and data together with the corresponding variable attributes. The
structure is of type QiSCDFContents.

Return Value

QMW OK The file was created and populated successfully.
Otherwise Return error codes are defined in qie.h. See QiErrStr.

Discussion QiWriteCSDSgenFlat reads a CSDS standard CDF file and populates the
structure pointed to by QiSCDF.

The allocation and freeing of QiSCDF is the responsibility of the calling routine, and
this must be done by calling the associated creation and deletion functions
QiMakeCDFContentsObj and QiFreeCDFContentsObj. Allocation and free-
ing of the string filename is the responsibility of the calling module. Internal storage
is freed before the function returns.

Related Information

/cluster/devel/include/qie.h

/cluster/devel/lib/qie.o

2.3.4 QiGetCSDSgenFlat

QiGetCSDSgenFlat

Read data and metadata from a flat file into QiSCDFContents object.

Synopsis
#include "qie.h"

long QiGetCSDSgenFlat (struct QiSCDFContents * QiSCDF,

struct QiSOptions * QiOpt);

Parameters

QiSCDF Specifies a pointer to a structure containing the path and name of file
to be read. This structure, on return, will hold the global attributes (metadata)
and data together with the corresponding variable attributes. The structure is of
type QiSCDFContents.

QiOpt Specifies a pointer to a structure containing processing options. The structure
is of type QiSOptions.

Return Value

QMW OK The file was read and structure populated successfully.
Otherwise Return error codes are defined in qie.h. See QiErrStr.

Discussion QiGetCSDSgenFlat reads a QMW standard ascii file and populates the
structure pointed to by QiSCDF. The file name is given by QiSCDF->io f name
and the path by QiSCDF->io f path.

File processing options are controlled through the structure pointed to by QiOpt.

The allocation and freeing of QiSCDF and QiOpt are the responsibility of the calling
routine, and this must be done by calling the associated creation and deletion functions
QiMakeCDFContentsObj, QiMakeOptionsObj, QiFreeCDFContentsObj and
QiFreeOptionsObj. Internal storage is freed before the function returns. Unused
pointers within the structures should not be set to NULL as these and defaults options
are handled safely within the “Make” and “Free” functions. The input structures are
unaltered.

8

Related Information

/cluster/devel/include/qie.h

/cluster/devel/lib/qie.o

2.3.5 QiFreeCDFContentsObj

QiFreeCDFContentsObj

Free memory allocated by CDF and Flat file read routines for contents structures.

Synopsis
#include "qie.h"

long QiFreeCDFContentsObj (struct QiSCDFContents * QiSCDF);

Parameters

QiSCDF Specifies a pointer to a structure to be freed of type QiSCDFContents.

Return Value

QMW OK Always returned.

Discussion QiFreeCDFContentsObj Frees memory allocated by
QiMakeCDFContentsObj(), and recursively by QiMakeQiVariablePtrs(),
QiMakeQiGAttrPtrs(), QiMakeQiVariable(), QiMakeQiVAttr(),
QiMakeCharPtrs() and QiMakeQiGAttr() in the structure QiSCDFContents,
and nested structures. Calls to these related make and free functions are safe against
free on unallocated pointers provided that the structure was created using
QiMakeCDFContentsObj.

Strings should have been created using malloc (or the Qie function QiNewStr). If
strings are to be freed before calling QiFreeCDFContentsObj the associated pointer
must be set to the Qie global STR NULL or another malloced string.
QiFreeCDFContentsObj tests all pointers for NULL before freeing and all strings
against STR NULL using QistrNULL.

Related Information

/cluster/devel/include/qie.h

/cluster/devel/lib/qie.o

See also:

QiMakeCDFContentsObj()

QiNewStr()

2.3.6 QiFreeOptionsObj

QiFreeOptionsObj

Free memory allocated for QiSOptions structures.

Synopsis
#include "qie.h"

long QiFreeOptionsObj(struct QiSOptions * QiSOpt);

9

Parameters

QiSOpt Specifies a pointer to a structure to be freed of type QiSOptions.

Return Value

QMW OK Always returned.

Discussion QiFreeOptionsObj Frees memory allocated by QiMakeOptionsObj() in
the structure QiSOptions. Calls to these related make and free functions are safe
against free on unallocated pointers provided that the structure was created using
QiMakeOptionsObj.

Strings should have been created using malloc (or the Qie function QiNewStr). If
strings are to be freed before calling QiFreeOptionsObj the associated pointer must
be set to the Qie global STR NULL or another malloced string. QiFreeOptionsObj
tests all pointers for NULL before freeing and all strings against STR NULL using
QistrNULL.

Related Information

/cluster/devel/include/qie.h

/cluster/devel/lib/qie.o

See also:

QiMakeOptionsObj()

QiNewStr()

2.3.7 QiMakeCDFContentsObj

QiMakeCDFContentsObj

Malloc memory for QiSCDFContents structures.

Synopsis
#include "qie.h"

struct QiSCDFContents * QiMakeCDFContentsObj ();

Parameters

none

Return Value

pointer to space for QiSCDFContents object

Discussion QiMakeCDFContentsObj mallocs memory for the structure
QiSCDFContents. Sub-structures are created using similar functions by the func-
tions called by the “Get” functions. Pointers are initialised to NULL and string point-
ers to STR NULL. Calls to these related make and free functions are safe against free
on unallocated pointers provided that the structure is freed using
QiFreeCDFContentsObj.

Strings within the structure should be created using malloc (or the Qie function
QiNewStr). If strings are to be freed before calling QiFreeCDFContentsObj
the associated pointer must be set to the Qie global STR NULL or another mal-
loced string. QiFreeCDFContentsObj tests all pointers for NULL and all strings
against STR NULL using QistrNULL before freeing.

10

Related Information

/cluster/devel/include/qie.h

/cluster/devel/lib/qie.o

See also:

QiFreeCDFContentsObj()

QiNewStr()

2.3.8 QiMakeOptionsObj

QiMakeOptionsObj

Malloc memory for QiSOptions structures.

Synopsis
#include "qie.h"

struct QiSOptions * QiMakeOptionsObj();

Parameters

none

Return Value

pointer to space for QiSOptions object

Discussion QiMakeOptionsObj mallocs memory for the structure QiSOptions. Point-
ers are initialised to NULL and string pointers to the global constant null string
STR NULL. Calls to these related make and free functions are safe against free on
unallocated pointers provided that the structure is freed using QiFreeOptionsObj.

Strings within the structure should be created using malloc (or the Qie function
QiNewStr). If strings are to be freed before calling QiFreeOptionsObj the associ-
ated pointer must be set to the Qie global STR NULL or another malloced string.
QiFreeOptionsObj tests all pointers for NULL and all strings against STR NULL
using QistrNULL before freeing.

Related Information

/cluster/devel/include/qie.h

/cluster/devel/lib/qie.o

See also:

QiFreeOptionsObj()

QiNewStr()

2.3.9 QiNewStr

QiNewStr

Create a pointer to space containing string.

Synopsis
#include "qie.h"

char * QiNewStr(char * old_str);

11

Parameters

old str pointer to a string to be copied into the new space.

Return Value

pointer to new string

Discussion QiNewStr mallocs memory for the new string and copies old str into it.
This function then returns a pointer to this new string. If malloc fails then a pointer
to STR NULL is returned.

Related Information

/cluster/devel/include/qie.h

/cluster/devel/lib/qie.o

2.3.10 QistrNULL

QistrNULL

Tests string against STR NULL.

Synopsis
#include "qie.h"

int QistrNULL(char *string);

Parameters

string pointer to a string to be tested against the global null string STR NULL.

Return Value

1 ‘True’ (1) is returned if the string is NULL.

0 ‘False’ (0) is returned if the string is not empty.

Discussion QistrNULL uses strcmp() to test string against a NULL string

""

. Empty strings are used (STR NULL) for unset strings in preference to NULL pointers
as they may safely be dereferenced by gui menus etc. This function is then used in
place of the test == NULL. Hence QistrNULL(string) is true when string is empty
and !QistrNULL(string) is true when string is non-null.

Related Information

/cluster/devel/include/qie.h

/cluster/devel/lib/qie.o

12

2.3.11 QiErrStr

QiErrStr

Get string associated with error condition.

Synopsis
#include "qie.h"

char * QiErrStr (int err_n);

Parameters

err n the error number returned by another QIE function.

Return Value A string containing an error message relevant to the input error code is
always returned.

Discussion QiErrStr generates a string for display to the user on encountering one of
the QIE eror codes. If the error is associated with a code failure rather than a local
problem (such as file write/read permission) then the number is given with “contact
CSC support”. If the error code is err n = QMW OK then the string “OK” is returned.
Space for the return string is malloced by QiErrStr and must be freed by the calling
function after use.

Related Information

/cluster/devel/include/qie.h

/cluster/devel/lib/qie.o

13

