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1 Background and Introduction

Now that QDOS2 can formally hold arrays, and with PEACE and other data in mind, we need to examine
what functionality QSAS needs to provide. This includes metadata and arithmetic or other manipula-
tions.

Note that we deal here with array entities in a manipulative sense. That is, for example, matrices
which obey matrix algebra. Thus for a time series of matrices, the timetag (or record) is NOT an array
index, but a sequence indicator. This corresponds to their treatment in QDOS2. A time series of vector
velocity is thus a sequence of 3×1 vectors.

In the following, I denote these sequence indicators by subscript “s”.

2 Examples

I give here a few real examples of array data. Later sections comment on the metadata and treatment
aspects. Appendix A illustrates a possible but incomplete implementation of most of these arrays and
their metadata.

Physical Vectors These are already supported by QSAS, but it is perhaps instructive to include them
here to see how they fit into the more general framework. Physical vector time series are 1-D
arrays of the form

a(i)(ts)

Herei indexes the vector component ((x,y,z) or (r,θ,φ) or whatever) of a quantity, such as mag-
netic field or flow velocity, measured at timets.

Energy-time or frequency-time These are examples of sequences of 1-D arrays with the following
structure

a(i)(ts)

For typical particle instruments,a is counts or phase space density or differential energy flux or
whatever measured at various scalar energiesEi and timests. For wave experiments,a could be
the spectral power measured at frequenciesνi (at timests).

Pitch angle distributions A 2-D array of the form

a(i, j)

containing counts, phase space density, ...a measured at energiesEi and pitch anglesθ j .

Phase space densityA 3-D array of the form

a(i, j,k)

containing phase space density or counts or ... measured at velocitiesvxi , vy j , vzk at timets OR at
energiesEi , polar anglesθ j , and azimuthal anglesφk .

Rotation Matrices A 2-D array of the form
a(i, j)

of cosinesei , ej . We may also often deal with a single matrix. Note thatai j is orthonormal.

Pressure TensorsA 3-D array of the form
a(i, j)

of the pressure tensorPi j . Note thati and j index base vectors in a cartesian frame, and thatPi j

is symmetric, has therefore only 6 independent values, is diagonalisable, and can be transformed
from one frame to another by (suitable) double application of a rotation matrix.
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3 Metadata and Related Matters

The correct interpretation, and therefore manipulation, of the above arrays requires additional informa-
tion in the form of associated data and descriptors for the values ofa and also for each of the dimenstions
i, j, k. . .

3.1 Universal Metadata

Some metadata is the same for all array elements. This is similar to metadata for a scalar quantity, such
as the Name, Frame, Units, and SIconversion for the values ofa. It is typically descriptive strings (with
some embedded numerical values in some cases).

3.2 Timetags

For completeness, let us begin with some brief comments on the timetags. As noted in the Introduction,
these play the role of sequence indicators rather than an array dimension. Nonetheless, many consider-
ations which apply to array dimensions also apply to timetags.

Time series of arrays will have timetags (as in the examples given above). Although the Cluster
convention is time-centred tags, it is quite common for data to be tagged with accumulation start time.
PEACE high resoloution data is delivered naturally in this way and ingestion routines could (probably)
shift these to conform to QSAS conventions. Alternatively, since we will probably write some of these
PEACE IDFS routines, we could force them to return time-centred tags. The same may not be true of
(all) foreign data.To shift to centres on ingestion may need some extention to QIE. For ASCII files,
using a header with FreeTimeFormat timetags would enable this to be done easily if the shift is
constant and known.

At present, I recommend that effort not be invested into this problem, and shift it to either the data
provider or to a plug-in. The codification used in Appendix A for energy and angle bins would also work
for time.

3.3 Metadata for Array Dimensions

Conceptually, the same issues arise for array dimensions as do for timetags. Manipulation may require
more than one dimension to be treated together.

3.3.1 Basic Concepts

Each dimensioni corresponds to a 1-D array of length Sizei . I assume here that all arraysa are concep-
tually rectangular; that is, the values assigned to one dimension apply for all positions down all other
dimensions, with the possible exception of the time (see below). It is possible that some dimensions are
closely related, such asvxi , vy j , vzk in the phase space density time seriesf (vxi ,vy j ,vzk)≡ f (~vi jk). This
association could prove useful since~v has the properties of a vector, can be rotated or (be) expressed in
polars, etc.

It is possible that a dimension corresponds itself to an array of arrays, rather than a 1-D array of
scalars; one use for such a notion (which in any case is straightforward to implement) is in bin bound-
aries. Note however, that the arraya cannot index into these arrays, so using them requires information
about their dimensionality to be visible somewhere.

Thus each dimension requires specification of:

Sizei The number of entries in this dimension. It is not necessary to have an explicit metadata item for
this if it can be deduced by counting the number of entries.
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FIELDNAM i The name of this dimension, e.g., “Energy” or “Frequency” or “polar angle.

UNITS i A text string describing the units, e.g., “keV”

Frame Usually “scalar>na” but perhaps we should extend this to include indexing information and/or
relationships to other dimensions, such as “index>gsexyz” if the dimension corresponds to the
cartesion components of a physical vector or “x>gsexyz” if the dimension hold thex-component
values of a set of vectors.This to be revisited after CEF implementation is finalised.

SI conversioni To convert the values to base SI units, e.g., “1.0e3>Hz”

Valuesi The actual values for the Sizei elements of the array. Although this looks like metadata for
the arraya, these Values are just another array (object) and so, like Size, may be inferred by
the fact that it is associated witha. However, it is necessary to ensure that the association of
the value arrays is ordered to associate to the correct dimension ofa. In QDOS-speak, it is not
sufficient that there be a set of cross-references to, say, EnergyLevelObject and PitchAngleObject;
EnergyLevelObject needs to be associated with the first dimension ofa and PitchAngleObject the
second if the array is held asa(Ei ,θ j).

Note that these values may be independent of all the other dimensions, e.g., the same set
of energy level values for all time “records” or there may be different values for different
records. An example of the latter case is a particle instrument which alternates between two or
more bin ranges or continually changes its energy range from spin to spin, or from one instrument
mode to another. Infrequent changes in instrument mode are easiest to accommodate by splitting
into separate objects. Alternating modes could be accommodated by a flag for each record. Truly
wandering bins require more metadata. Cluster CIS (and PEACE) have some alternating mode
high resolution data products.

3.3.2 Bin Information

For interpolation/joining and plotting arrays, it is often necessary to know more detailed information
about the bin (linear, area, volume, ...) in which each measurement lies.

Bin Boundaries Something which indicates whether the values are at the centres of each bin or some-
where else, together with information on the bin width. Two models are prevalent, though other
variants are also found:

1. Bin start or centres with given bin width or touching bins. If the bins are centred and touch-
ing, are they linearly or logarithmically (or arbitrarily) spaced? It is easy to generalise to bin
values located a fractionf (linearly or logarithmically as appropriate) from the start, e.g.,
f = 0 are bin starts,f = 0.5 are centred bins,f = 1.0 indicates that the values correspond
to the end of the bin. For readability, Appendix A uses “centred” as synonomous with 0.5.
Logarithmic widths are log(end/start)

2. Separate arrays, or ann×2 array, for bin start and bin end values to cope with bins of varying
sizes, etc.

Note that arrays are often plotted as spectrograms, so each array element is mapped to a finite
region on the plot, requiring start and end bin values for all plottable dimensions.

Note also that in much of the discussion which follows I assume explicitly that the bin boundaries
are such that the end values are always arithmetically larger than the start values. Some bins are
often returned in the opposite sense, such as decaying energy sweeps or azimuths from a spacecraft
with spin axis anti-aligned with the coordinate system cylindrical axis.
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Table 1: Bin “Volume” Factors

Dimension
System 1-D 2-D 3-D
Cartesian x2−x1 (x2−x1)(y2−y1) (x2−x1)(y2−y1)(z2−z1)
Cylindrical ρ2−ρ1 ρ(φ2−φ1)(z2−z1) 1

2(ρ2
2−ρ2

1)(φ2−φ1)(z2−z1)
z2−z1

1
2(ρ2

2−ρ2
1)(φ2−φ1)

φ2−φ1 (ρ2−ρ1)(z2−z1)
Spherical r2− r1 r2(cosθ1−cosθ2)(φ2−φ1) 1

3(r3
2− r3

1)(cosθ1−cosθ2)(φ2−φ1)
θ2−θ1

1
2(r2

2− r2
1)sinθ(φ2−φ1)

φ2−φ1
1
2(r2

2− r2
1)(θ2−θ1)

Bin “Volumes” The geometry of the area or volume of a bin in 2-D or 3-D arrays needs to be understood
in order to join or interpolate them. For example, bin(i j ) of a 2-D (plus time) arraya(i, j)
measured in cartesian coordinates has an area

Ai j = (xend
i −xstart

i )(yend
j −yend

j )

whereas a 2-D arraya(i, j) of Energy vs. pitch angle data has a bin “area”

Ai j =
1
2

(
Eend

i
2−Estart

i
2
)(

θend
j −θstart

j

)
in theE−θ plane but a bin area

Ai j =
1

mα

(
Eend

i −Estart
i

)(
θend

j −θstart
j

)
in velocity space. Spherical coordinates introduce further complications. In the pitch angle case,
for example, the volume of each bin in velocity space would be

Vi j =
1
3

√
8

m3
α

(
Eend

i
3/2−Estart

i
3/2
)(

cosθstart
j −cosθend

j

)(
φend

k −φstart
k

)
Such rules need to be associated with the metadata somehow. Note that these concepts require
more than one dimension of the original arraya to be considered simultaneously. The simplest
multi-dimensional interpolation algorithms merely treat each dimension in turn as a sequence of
1-D interpolations.

Table 1 illustrates the range of possible factors for cartesian, cylindrical, and spherical systems.
It does not consider the simultaneous transformation from, e.g., energy to velocity space shown
above. Note the complication of some 2-D areas which require a value for the third coordinate
to specify a real area. This suggests that the bin “volume” information needs to be kept with the
parent array rather than inside the separate array dimension variables.

3.3.3 Periodic Dimensions

Some dimensions, in particular azimuthal angle bins, are cyclic. This information needs to be kept and
considered as it affects, for example, interpolation and averaging techniques.
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3.4 Related Dimensions

Some dimensions may have some logical relationship between one another. For example, phase space
density is measured in bins in velocity space, so three dimensions correspond to the three components of
a velocity vector, with accompanying frame attributes. There is probably considerable utility in keeping
these three dimensions coupled, to enable frame transformations, rotations, etc.

4 Generalised Joining

Before two arrays can be combined arithmetically they need to be “joined” onto a common discretised
set of dimensions. There is no conceptual difference between joining onto a common time axis and
joining onto a common energy axis. However, in practice, there are two differences with which the user
is often faced:

1. The energy dimension (and others such as polar bin/solid angle, ...) are often highly nonlinear, so
that simple (boxcar) averaging or linear interpolation are often inappropriate.

2. The values associated with the arraya can be either integrated over a sampling bin, such as count
rates or partial densities, or differential measures, such as phase space density.

Interpolating count rates without taking account of bin size will lead to bizarre results. The only
quantities which can be meaningfully interpolated are densities over the corresponding space. That is, to
join a count rate measured in energy binsEi onto energy binsE j , we should first convert the count rate
to a density (by dividing by the size, area, or volume of the associated bin), interpolate this density to the
new bin centresE j , and then multiply by the corresponding new bin size, area, or volume to calculate
the interpolated count rate.

The straightforward mechanism to do all this consists of the following steps;

1. Convert all quantities to density in the appropriate space. As a concrete example, let us take
the (realistic) case of phase space density measured at energiesEi and polar anglesθ j ; we shall
assume that the sampling in azimuthal angleφ is uniform (i.e., linear) and can be treated as simple
linear interpolation at a later stage. Then the original array isa(Ei ,θ j). There is an associated
polar bin area1 given by

Ai j ∝ (Eend
i −Estart

i )(cosθstart
j −cosθend

j )

If a is phase space density, do nothing. Ifa is counts (i.e., integrated over the bin), formfi j ≡
ai j/Ai j .

2. Let the new bins have areaAIJ.

3. For each new bin, find all the old bins which overlap it. Calculate:

Fnew
IJ = ∑

overlapping bins

fi j ×overlap area

wIJ = ∑
overlapping bins

overlap area

1Interestingly, this seems an obvious choice, but it does NOT, in fact, correspond to the 2-DE− θ factors presented in
Table 1, nor to part of the 3-D volume given there. For many applications, it may be most appropriate to use the 3-D volume
factors even when interpolating over only two dimensions. For example, a pitch angle distribution is integrated inφ so that
each velocity-angle bin has a weight∝ v3 NOT v2.
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4. Calculate the interpolated density
fIJ = FIJ/wIJ

5. If the desired quantity is an integral measure (e.g., counts),

aIJ = fIJ×AIJ

Joining onto a cyclic dimension, such as azimuthal angleφ is accomplished by duplicating bins at
either end. Once two quantities have been “joined” onto the same grid, algebraic manipulation can
proceed element by element.

5 Reducing Dimensionality

For plotting and other purposes, it will be necessary to reduce the dimensionality of the arraya down to
that of the plot or other target space. This is accomplished by one of two means:

5.1 Slicing

Take a slice of the data. The simplest slices correspond to fixing all indices apart from those in the
target. For example, given an array of phase space densitiesa(i, j,k) at some time, take a slice in which
energyEi varies but anglesθ j andφk are fixed at user-specified valuesθJ andφK , to generate an array
a′(i)JK. Such simple slices do not involve manipulations other than selecting values out of the existing
array. More complicated slices invoke some relationI(i, j,k) to deliver an arrayaI and may require some
interpolation as discussed above in the section on generalised joins.

5.2 Integration

Collapse the data onto a sub-dimension by integration. For example, find the energy spectrum of a phase-
space distributiona(i, j,k) by integration over anglesθ j andφk. This requires summation weighted by
areasA jk which in this case are given byA jk = (cosθstart

j −cosθend
j )× (φend

k −φstart
k ).

More complicated integrations require integration onto a surfaceS(i, j,k). One example is to construct
the pitch angle distributionP(vI ,αJ) from the 3-D phase space densityf (vi ,θ j ,φk) given the field direc-
tion ~B and bulk flow velocity vector~V. Formally this is

P(v′,θ′) =
∫

f (~v−~V) dφ′

where the prime’d frame has zero bulk flow and itsz-axis aligned with~B. Thus this requires a trans-
lation and rotation into the field-aligned, bulk flow frame, followed by an azimuthal integration. It is
possible to do this as a single 3-D interpolation following the methodology described in the generalised
joining section. Alternatively, it may be more efficient (and accurate) to devise tailor-made algorithms
to calculate such pitch angle distributions.

6 Implementation Challenges

I give here a few concrete examples of array manipulations. They use particle phase space density
f (E,θ,φ, t) and power spectraP(ν, t).

1. Calculate the different in power between two spectraP1 andP2 which are measured at frequencies
νi . These frequencies are the centres of equally linearly spaced frequency bins.
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2. As in the preceding example, but for equally logarithmically space frequency bins.

3. Calculate the difference in power between two spectraP1 andP2 measured in frequency bands
νlow

i → νhi
i andνlow

I → νhi
I respectively.

4. Calculate the energy-time spectrogram off given bin limitsElow
i → Ehi

i , θlow
j → θhi

j , φlow
k → φhi

k .

5. Calculate the pitch angle distribution off in the previous example given~V and~B. [Hard]

A Example Arrays and Their Metadata

This appendix provides some incomplete examples of arrays and their metadata. Outstanding problems
include:

1. Codification of information about how related dimensions are related. Perhaps it would be better
to codify the nature of the coordinate system (cartesian, spherical polars, etc.) and the matching
of dimensions to their place within this system as shown for the Phase Space Density example.

2. Specific handling of cyclic dimensions (codifying as an azimuthal angle would imply cyclic be-
haviour).

3. Special requirements, e.g., that energies and polar angles must be positive, to ensure that interpo-
lation algorithms don’t generate a negative value.

4. Automatic transformation to velocity from energy or vice versa. It is not at all obvious whether
joining of, say particle distribution functions, should be done in a spherical system with energy as
the radial dimension (so the volume∝ E3) or speed (so the volume isv3 ∝ E3/2).

A.1 Physical Vectors

Consider a time series ofNpts measurements of magnetic field vectors~B(t). These are held as a sequence
of 1-D arrays of the formB(compi)(ts) with the following structure and metadata:

B(compi)(ts)
Object B compi ts
Name Magnetic Field Cartesian Index Epoch
Frame vector>gsexyz index>gsexyz n/a
UNITS nT () msecs
SI conversion 1.0e-9>T 1>() 1.0e-3>s
Size Npts 3 Npts

Values Bi j (0,1,2) ts
Bin Boundaries n/a n/a centred>touching>linear
Bin Volume n/a n/a end - start

A.2 Energy-Time Spectrograms

Consider a time series ofNpts measurements of omni-directional particle fluxF(t). These are held as a
sequence of 1-D arrays of the formF(Ei)(ts), where the energy binsEi are given by their starting values
and spaced logarithmically.
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F(Ei)(ts)
Object F Ei t j

Name Omni-flux Energy Epoch
Frame scalar>na scalar>na scalar>na
UNITS # cmˆ-2 sˆ-1 keV msec
SI conversion 1.0e4> ()mˆ-2 sˆ-1 1.234e5>J 1.0e-3>s
Size Npts Nlev Npts

Values Fi j Ei ts
Bin Boundaries n/a 0.0>touching>log centred>touching>linear
Bin Volume n/a end - start end - start

A.3 Pitch-Angle Distributions

Consider a time series ofNpts measurements of phase space pitch angle distributionsp(E,θ, t). These
are held as a sequence of 2-D array of the formp(Ei ,θ j)(ts). The energies are of fixed logarithmic width
around their centre values, whereas theθ bins have start and end values supplied.

p(Ei,θ j)(ts)
Object p Ei θ j ts
Name PAngle Dist Energy Pitch Angle Epoch
Frame scalar>na scalar>na scalar>na scalar>na
UNITS # kmˆ-6 sˆ3 keV deg msec
SI conversion 1.0e-9>()mˆ6 sˆ3 1.234e5>J 1.0>deg 1.0e-3>s
Size Npts Nlev Npa Npts

Values pi jk Ei (θstart
j ,θend

j ) ts
Bin Boundaries n/a 0.5>0.3>log explicit c>t>lin
Bin Volume n/a 1.1e30(end - start) cos(start)-cos(end) end - start

A.4 Phase Space Density

Consider a time series ofNpts measurements of a phase space distributionf (~v)(t). These are held as a
sequence of 3-D arrays of the formf (vi ,θ j ,φk)(ts). The speedsvi are bins of varying width with start
and stop values supplied, the polar anglesθ j and azimuthal anglesφk are both linearly spaced touching
bins given by their start values.

f (vi,θ j ,φk)(ts)
Object f vi θ j φk ts
Name PSD Speed Polar Angle Az. Angle Epoch
Frame scalar>na scalar>na scalar>na scalar>na scalar>na
UNITS # kmˆ-6 sˆ3 km/s deg deg msec
SI conversion 1.0e-9>()mˆ6 sˆ3 1.0e3>msˆ-1 1.0>deg 1.0>deg 1.0e-3>s
Size Npts Nlev Npol Naz Npts

Values fi jk (vstart
i ,vend

i ) θ j φk ts
Bin Boundaries n/a explicit 0.0>t>lin 0.0>t>lin c>t>lin
Bin Volume n/a r>sphere pol>sphere az>sphere end - start

A.5 Rotation Matrix

Consider a rotation matrix from GSE to GSM coordinates. This is held as a 2-D array of the formai j .
In fact, the rows ofa are the GSM-unit vectors expressed in the GSE system. Missing from the example
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is the fact that it rotates vectors into the GSM frame, i.e., that it is a rotation matrix in addition to being
a tensor in the GSE frame.

a(compi,compj)
Object a compi compj

Name Rot. Matrix Row Column
Frame tensor>gsexyz index>gsexyz index>gsexyz
UNITS () () ()
SI conversion 1.0>() 1.0>() 1.0>()
Size 1 3 3
Values ai j (1,2,3) (1,2,3)
Bin Boundaries n/a n/a n/a
Bin Volume n/a n/a n/a


